At the PASS Summit this year, I attended a session by Michael Rys. In this session he introduced the concept of LETS as an approach to process data in the data lake. If you are familiar with data lake, then you will be familiar of having to apply a schema to the data held within. The LETS approach is purpose design for schematization.
Where ETL stands for Extract, Transform, Load or ELT stands for Extract, Load, Transform – LETS stands for Load, Extract, Transform, Store.
Data are Loaded into the data lake
Data are Extracted and schematized
Data are Transformed in rowsets
Data are Stored in a location, such as the Catalog in Azure Data Lake Analytics, Azure Data Warehouse, Azure Analysis Services, for analysis purposes.
I really like this approach as it makes sense for how data are handled in the data lake. It’s something that I will be advocating and using, and I hope you do too!
How Artificial Intelligence and Data Add Value to Businesses
Knowledge is power. And the data that you collect in the course of your business
May
Databricks Vs Synapse Spark Pools – What, When and Where?
Databricks or Synapse seems to be the question on everyone’s lips, whether its people asking
1 Comment
May
Power BI to Power AI – Part 2
This post is the second part of a blog series on the AI features of
Apr
Geospatial Sample architecture overview
The first blog ‘Part 1 – Introduction to Geospatial data’ gave an overview into geospatial
Apr
Data Lakehouses for Dummies
When we are thinking about data platforms, there are many different services and architectures that
Apr
Enable Smart Facility Management with Azure Digital Twins
Before I started writing this blog, I went to Google and searched for the keywords
Apr
Migrating On-Prem SSIS workload to Azure
Goal of this blog There can be scenario where organization wants to migrate there existing
Mar
Send B2B data with Azure Logic Apps and Enterprise Integration Pack
After creating an integration account that has partners and agreements, we are ready to create
Mar